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The general high-frequency, rough-surface reflection process is treated by the method 
of stationary phase. In particular, the principle of stationary phase is applied to each 
of the local reflection events, which appear to depend on surface curvature as well as 
slope. However, we show that the number of reflecting highlights also depends on 
curvature and cancels the curvature dependence. These results agree fully with those 
obtained by Beckmann and Spizzichino for the special case of the Gaussian process. 

K E Y  W O R D S :  Reflection of radiation; surface reflection; physical optics; stationary 
phase method; Huygen's principle; Gaussian surface. 

1. I N T R O D U C T I O N  

It has been shown by Beckmann and Spizzichino (1) and others that the statistical 
properties of electromagnetic waves reflected by Gaussian surfaces depend only upon 
the rms surface slope. They use a method based on the assumption that the surface 
appears nearly locally flat relative to the scale (wavelength) of the incident radiation 
[i.e., the wavelength is assumed to be small compared with a typical length (surface 
radius of curvature)]. We show here that their calculation is consistent with what 
we know about the local high-frequency reflection event. In particular, the single reflec- 
tion event appears to depend on surface curvature as well as on slope; however, 
we show that the number of reflecting highlights also depends on curvature and this 
cancels the curvature dependence. 

Consider a physical model for the process as follows: when the electromagnetic 
wevelength is small compared with the radius of curvature of the surface, the curvature 
determines the intensity of the return from a single reflecting point or highlight 
(the normal to the tangent plane bisects the angle between the incident and reflected 
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rays). The scatter coefficient can be calculated directly from the Kirchhoff integral by 
the method of stationary phase. (2) 

For  a one-dimensional surface (one independent variable x determines the surface 
displacement), the scatter coefficient for backscattering at an angle of incidence 0 from 
the vertical and for electrical field vector in the y direction is (see Beckmann and 
Spizzichino, (~) p. 23; here, we let their --05 = 01 ~ 0) 

L 

p = - - ( I /2L cos O) f R(x) q~(x) e is(~) dx (1) 
- - L  

where R(x) is the Fresnel reflection coefficient for a smooth, finitely conducting plane 
with incident wave horizontally polarized and angle of incidence the local angle of 
incidence $(x) = 0 -- fi(x), where [3(x) is the local surface slope angle. The functions 
R(x), (9(x), a nd f ( x )  are given as follows: 

R(x) -= {cos r -- [y2 _ sin 2 (~(x)]l/2}/{cos c~(x) -b [y2 _ sin s 4)(2)]1/2} 

c}(x) = ~'(x) sin 0 + cos 0 

f ( x )  = (4~r/)t) x sin 0 -- (4rr/A) ~(x) cos 0 

where Y is the normalized electrical admittance (i) of the medium below the surface 
and ~(x) and ~'(x) are surface height and slope, respectively. [The same formula (1) 
applies to acoustic reflection at a pressure release surface with R the acoustic reflection 
coefficient.] This definition then gives the ratio of the amplitude of the reflected 
electric field to that of the field specularly reflected from a perfectly conducting, flat 
surface of the same overall size with the same angle of incidence at the same distance, 
when the incident wave is horizontally polarized. (The results are easily extended to 
forward scattering with arbitrary reflection angles.) 

When the variation of surface height is large compared to the electrical wave- 
length ;~, the only contributions to the integral are those given at the "stationary 
phase" points x = x , .  These points are defined by df(x)/dx = 0. The amount of 
each of these contributions is (2) 

--[R(27r) z/2 qS(x~)/If"(x~)U 21 exp{i[f(x~) i 7r/4]} 

where the upper or lower sign is to be taken in the exponential according as f"(x,~) 
is positive or negative, and at these points, 

--R(x,~) = ( Y -  1) / ( r  + 1) 

(~(xn) = see 0 

If"(x~)l = 2(2rr/~t)x/2 [ ~"(Xn)] COS 0 

so that Eq. (1) becomes 

--RA1/2 ~, _z/2_i,b,, 
P -- 2 21/2L cos 0 r,~ e (2) 
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where r~ is the radius of curvature, given by 

r~ = 1/1 ~"(xn)[ cos 3 0 

and the angles r are defined by 

r -=-f(x~) :J:: ~/4 

with the stipulation on the sign that given above. Assuming incoherence of specular 
points ((r  r ~- 0), then the mean-square scatter coefficient is 

(i p I s) = (R2A/8L 2 cos 2 0) r~ (3) 
- -1  

For an ergodic surface, we have further that 

N 

( ~ = l r ~ ) - + ( N ) ( r ~ )  (4) 

asymptotically with (N)--+ co, where (rn) is the mean radius of curvature at the 
reflecting points. A similar result has been obtained previously by Kodis Iz~ for the 
special case of a perfectly conducting surface. 

Repeating the above procedure for a two-dimensional surface (two independent 
variables x and y for surface displacement, e.g., terrain or ocean surfaces), the scatter 
coefficient for backscatter at an angle of incidence 0 from the vertical is (see Beckmann 
and Spizzichino, mp .  26; letting their --03 =/= 01 ~ 0 and 0 z = 0) 

y 

= (1/4xy cos 0) .(',j f -x  R(x, y) r y) e ~(~'~) dx dy (5) P 

R(x, y) is in general not a Fresnel coefficient, except at the stationary phase points, 
where 

--R(x~ , y~) -= ( Y -  1)/(Y-k 1) 

as above. [For acoustic reflection from a pressure release surface, (5) holds at every 
point and R(x, y ) =  R, the reflection coefficient at the pressure release surface.] 
The functions r y) andf (x ,  y) are given as 

r y) = ~x(x, y) sin 0 -k cos 0 

f ( x ,  y) = (47r/A) x sin 0 --(4~r/2t) ~(x, y) cos 0 

where ~(x,  y) ~-- ~3~(x, y)/~x and ~(x, y) is the surface height. The stationary phase 
points for this integral are given by 

~f(x, y)/?x = ~f(x, y)/~y -~ 0 

To evaluate the contribution at the nth stationary phase point, rotate the x, y coor- 
dinate system to coincide with the direction of principal radii of curvature at that point 
so that 

~Zf(xn, y,)/Ox Oy = 0 
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In  the ne ighborhood of  a part icular  s tat ionary phase point ,  defining s e ~ x - -  x~ and 
~7 ~= Y - -  Y~, the Taylor  series expansion f o r f i s  

f (~ ,  ,7) = f (x ,~,  y~) Q- �89 fxo~(x,~ , Y~) -k �89 fu~(x,~ , y~) q- "" 

since 

f~(x=, y,,) = L ( x = ,  y=) =.L~(x=,  y=) = 0 

The contr ibut ions f rom each of  these points  is then (2) 

--2rrRqI(x,,, y=) exp{i[f(x,~, y,~) • (rr/2 or  0)]} 

I f~=(x., y . ) f ~ ( x = ,  y.)l~/~ 

where the upper  or  lower sign is to be taken in the exponential  according a s f ~ ( x ~ ,  y , )  
a n d f ,  j~(x,~, y , )  are bo th  positive or  negative, and zero is taken otherwise. Also, 

~ ( x ~ ,  y~) = sec 0 

[fwx(x,~, Y~)l = 2(2"ar/A)l/2[~xx(xn, Y,~)I cos 0 

I f~(x,~,  y~)[ = 2(27r/A)~/2 I g~ (x~ ,  y~)] cos 0 

so that  Eq. (5) becomes 
iV 

p = ( - -RA/8xy cos 0) ~ (a,~b,,)l/~ exp(i~b.') (6) 
n = l  

where  a ,  and b,~ are the principal radii o f  curvature  at the nth s tat ionary phase point.  
The inverse of  the produc t  a,~b,~ is the total  curvature  K~ = 1/a,~b,~, defined by 3 

and 

K .  - -  I ~ ( x . ,  y . )  ~ ( x . ,  y . )  I cos ~ 0 

~,~' =-- f (x,, , y,~) :t: (rr/2 or 0) 

with the stipulation on sign or 0 as above. For  incoherent  specular returns,  the 
mean-square  scatter coefficient is 

iV 

(] 012) = (R2A2/64x~y2cos2 0) Q~=la,~bn)_ (7) 

and for  the ergodic surface, 

(21 a,~b,~ --~ (N)(a,~b,~) (8) 

3 Normally,m total curvature K is defined by I ~x~uu -- ~ I cos 40, where cos 40 = (1 -t- ~2 + ~2)-~ 
or tan 20 = ~2 + ~2. For the locally rotated coordinates, however, g~(x,, y,) = 0 for each r 
giving the above definition (in the new coordinates). 



The Effect of Curvature Variation on the Scattering from Rough Surfaces 389 

asymptotically as <N} -+ o% where <a~b~} is the mean product of principal radii of 
curvature at the reflecting points. Kodis (~) obtained a similar result (restricted to 
perfectly conducting surfaces). 

We show next that for statistically homogeneous surfaces having first-order 
joint probability densities of first and second directional derivatives of the surface, 
the mean random sums in (3) and (7) can be calculated in terms of these, and by so 
doing, one finds an annuliment of surface curvature effects. The method is based on 
the differential (geometric) probability calculus associated more generally with other 
"crossing" problems as well. Using these methods, Longuet-Higgins (a) has studied 
the quantity (N}. It will be shown here how these same methods can be used to evalu- 
ate the means of the random sums given above. 

2. C A L C U L A T I O N S  OF MEANS 

Let us consider the mean random sum in (3) first. By dividing the interval of 
length 2L into k subintervals of length Ax each, then for the statistically homogeneous 
surface, by linearity, we have as a limit 

r~ = !imk<rp} 
n=l t k ~ o o  

(9) 

where, for each k, r is the radius of curvature in a given subinterval and p the proba- 
bility (given r) that a specular point occurs in that subinterval, the expectation taken 
over r. The quantity <rp} approximates the mean random sum of radii at the specular 
points in the given subinterval, approaching the true value as k - ~  oe. Then, k<rp} 
approximates the mean random sum over the entire interval. If the limit given by (9) 
exists, then it is a valid way of calculating the mean of this random sum. From the 
usual probability argument, (5) we have the stochastic integral (approximating p for 
Ax small) as 

P = f P(~'I ~")d~' 
. 4x  

where ~' = tan 0 and p(~' [ ~") is the probability density of slope conditioned on 
curvature. From the Jacobian [ ~" [ = 1/(r cos 3 0), this becomes 

rp = (Ax/cos 3 0)p(~' I ~") 

so that from (9), in the limit as Ax --+ O, 

rn = (2L/cos ~ 0) p(~') (10) 
~ n = l  / 

where p(~') is the probability density of surface slope at any given point and ~' = tan 0. 
This result can also be derived from (4) to show explicitly the cancellation of curvature. 
Proceeding to do this, first calculate <r,}. For  this, it is sufficient to condition on the 
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occurrence of a specular point in a given subinterval Ax and let Ax -+ O. (It is neces- 
sary to take an interval, since conditioning on the occurrence at a point is overly 
restrictive and in so doing, one obtains a divergent result in most cases.) Let us first 
obtain the probability density function of curvature at a specular point given that it 
occurs in a given subinterval Ax. Consider the probability element 

p(~ ' ,  ~") a t '  d~" 

for the first two derivatives at a random position (in Ax) x (near x0 = 0 without loss 
of generality). Transforming variables ~' -~ x and normalizing, this becomes 

p(~', ~")[ ~" l dx d~"/p(Ax) 

where p(Ax) is defined to be the probability that a specular point occurs in Ax, and 
for Ax small, is approximated by 

p(Ax) -- (N} (Ax)/ZL 

Then, the joint probability density for a random point x and curvature ~" given 
that 0 <-- x <_ Ax  and ~' = tan 0 is approximately given by 

p.(x,  ~") = 2Lp(~', ~") [ ~" I/(~N) Ax) 

Integrating x over Ax  and letting Ax  ~ O, then the desired probability density of 
curvature at a specular point is 

p~(~") = 2Lp(~', ~")1 ~" I/f N )  

where ~' = tan O. From this, 
co 

( r . )  = f r.p.(~") d~" 
- - o o  

and since r~ = 1/(1 ~" I cos z 0), then 

(rn) = 2Lp(~')/((N) cos z O) 

so that 

r.  = ( N ) ( r . )  = 2Lp(~')/cos 3 0 

in agreement with (10). Thus, for the one-dimensional surface at least, the mean ran- 
dom sum of radii of curvature at the reflecting points is in fact independent of curva- 
ture and only depends upon the probability density of surface slope. 

Extending the above arguments to the two-dimensional surface case, divide the 
area 4xy into k 2 units of area Ax Ay each (Ax = Ay). Then, 

a,~b,~ = lira k~(abp) (11) 
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where, for each k, a and b are the principal radii of curvature in a given unit and p is 
the probability (given a and b) that a specular point occurs in that unit, the expectation 
taken jointly over a and b. As before, 

P -= f f P ( ~ ,  ~ I ~ ,  ~ ,  ~ )  d~(x) d~,(y) 
.d~ A y  

where ~ = tan 0 and ~ = 0 and p ( ~ ,  ~ ] ~ 
density of slopes [directional derivatives ~ 
ditioned on curvatures [ ~  ~ ~ ( x ,  y)/Ox ~x, 
~ ( x ,  y)/~y ~y]. From the Jacobian 

we have 

so that 

, ~ ,  ~vu) is the joint probability 
~(x,  y)/~x, ~ ~ ~(x,  y)/Oy] con- 
~ =-- ~ ( x ,  y)/~x Oy, and ~ ---= 

J = I ~ , -  ~ I = 1lab cos ~ 0 

abp(ab) = (~Ix/Iy/cos 4 0) p (~  , ~, ] ~ , ~ , ~ )  

a,~bn = (4xy/cos a O) p (~  , ~) (12) 
~ n = l  i 

wherep(~ ,  ~)  is the joint probability density of slopes at a given point and ~ = tan 0 
and ~v = 0. This result is also obtained, starting with (8), from (a,,b~) as follows: 
the probability element 

P ( ~ ,  ~v, ~ . ,  ~ v ,  ~vv) d ~  d~v d~x~ d ~  d~vy 

for the first and second derivatives of the surface at a random position [in (/Ix,/Iy)] 
(x, y) near (Xo, Yo), Xo = Yo = 0 without loss of generality, is transformed and 
normalized as follows: 

[p(~., ~ ,  ~ ,  ~ ,  ~v)J/p(/Ix, /Iy)] dx dy d ~  d ~  d~, v 

where J = [ ~ v  -- ~ ] and p(/Ix,/Iy) is the probability that a specular point 
occurs in (~Ix,/Iy), and is approximated by 

p(Ax, Ay) = (N)(AxAy)/4xy 

The joint probability density of a random point (x, y) and curvature ( ~ ,  ~.~, ~ ) ,  
given that 0 <= x, y <= Ax, Ay; ~. = tan 0, and ~ = 0, is approximately 

4xyp(~ , ~ , ~ ,  , ~ ,  , ~u)J/((N) Ax Ay) 

Integrating x over Ax and y over Ay, then the desired probability density of curvature 
at a specular point for Ax = Ay ~ 0 is 

p ~ ( ~ ,  ~ ,  ~ )  = 4xyp(~,  ~,, ~:~, ~ ,  ~ ) J / ( N )  

where ~ = tan 0, ~ = 0, and J = 1 ~ -- ~2 ] = 1/(a,~b,~ cos 4 0). From this, x y  

(a~b,~) = f f f a,~b,~p,~(~ , ~ , ~v) d ~  d ~ ,  
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giving 

so that 

(a,~b,~) = 4xyp(~o~ , ~ ) / ( ( N )  cos 4 0) 

a~b~ = ( N ) ( a ~ b , )  = 4 x y p ( ~  , ~,j)/cos 4 0 

in agreement with (12) above. Thus, we have a similar conclusion for the two-dimen- 
sional case as for the one-dimensional case and combining these results, (10) and (12), 
with (3) and (7), then the mean-square scatter coefficients are expressible as 

(I p I2)~ ~- R2)~P(~')/(4L cos 5 0) (13) 

(I p 12)~ = R~A~P(~ , ~ ) / ( 1 6 x y  cos ~ 0) (14) 

where ~' = ~ -- tan 0 and ~: = 0 for the one- and two-dimensional surfaces, respec- 
tively. 

3. D I S C U S S I O N  

These formulas, (13) and (14), are what one might expect as the limiting case of 
the discrete, flat-facet surface model of geometric optics when the number of facets 
per unit area is increased while the size of each diminishes to zero. However, the deri- 
vation here of these results is based on the Kirchhoff model or "physical optical" 
model with the surface curvature taken into account. By the application of "stationary 
phase" arguments and differential (geometric) probability calculations, it has been 
possible to show exactly how it is that the curvature effects are not present (or are 
accounted for in the probability density of slope) in the final result. These results have 
been checked with those which are known for particular cases such as sinusoidal 
profiles and Gaussian surfaces m (two-dimensional Gaussian processes) and have 
been found to be in full agreement. This is illustrated by the following two examples. 

4. E X A H P L E S  

Consider first the sinusoidal profile 

~(x) = A sin[co(x -- %)] 

where A (or co -1) has slight variations (of order A, so that this surface is noncoherently 
diffracting) and xo is a uniform random variable, 0 G wx0 =< 2z: (so that this surface 
also is statistically homogeneous). We will show here that the use of either formula (4) 
with ( N )  = N and (r~) = r~ (since these are fixed for given values of 0, L, A, and co) 
or (10) gives the same result. To find p(~') in (10), take the first two derivatives 

~ ' ( x )  = A~o cos [~o(x  - x0)] 
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and 

~"(x) = --A~o 2 sin[~o(x - -  x0)] 

Then, ~' and - - (~" /w)  have the circular uni form joint  probabi l i ty  density (in po la r  
form)  

p~(r, o 0 - -  S(r - -  Aco)/2rr 

where 

~' = r cos c~, --(~"/r = r sin 

and ~(r - -  Arz) is the Dirac  delta function. In  rectangular  form,  then, 

p(~' ,  ~") = ~(r - -  A~o)/2~rra~ 

where 

Thus,  

so that  

r ~ = ( ; ' )~  + (;-/~o)~ 

0o 

p(~') = ( [~(r - -  Aw)/2~roJ]  d~" = 1/(rrAco sin a) 

rn = 2L/(1rArn sin c~ cos 3 0) 

F r o m  (4) with ( N )  - -  N and ( r~)  = r~,  where simple calculation gives 

2L 
N = 2 - -  

(2~r/co) 

and 

so that  

r n = 1/([ ~ '  I cos~ 0) = 1/(Aco 2 sin a cos 3 0) 

Nr~ := 2L/(~rAco sin c~ cos 3 0) 

in agreement  with that  found by the use of  (10). 
Consider as the next example  the two-dimensional  Gauss ian  surface (surface 

height given as a two-dimensional  Gauss ian  process). F o r  simplicity, consider the 
isotropic case where 

P ( ~ ,  ~ )  = p ( ~ )  P ( ~ )  

p ( ~ ,  0) = p=(0) exp(--~2/2~2~ 

p(0)  = 1 / ( 2 , ~ 1 %  
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where cr is the rms surface slope. Using  (14), then the mean-square  scat ter  coefficient 
for  this case is found  to be 

R2)t 2 e x p [ - - ( t a n  2 0)/2~ 2] 
(I P 12>~so-~auss = 167rcr2A cos 6 0 

where A is the surface area. This fo rm is in agreement  with tha t  found  by  Beckmann  
and  Spizzichino. (1) 
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